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LE'ITER TO THE EDITOR 

Quasi-exactly solvable models with an inhomogeneous 
magnetic field 

0 B ZasIavskii 
kPartmenC of Physics, Kha&ov University, Kharkov. Svobady Sq.4, Ukraine 310077 

Received 16 March 1994 

Abstract. Let group generators having 6nitedimensional representation be realized as H d a n  
linear differential operators without inhomogeneous term BS takes place, for example, for the 
SO(n) gmup. Then camponding group Hamittoninns containing tem linear in genecuors 
(along with quadratic ones) give rise to quasi-exactly solvable models with a magnetic field in 
a curved space. In pmicular, for the SO(4) gmup Hamiltonian with isompic quadraric p". 
the manifold within which a quantum particle moves has Ihe geomeay of the Einstein universe. 

Quantum mechanical models admitting exact solutions of the Schrodinger equation attract 
quite understandable attention. Until recently it was considered to be axiomatic that there 
are only two possibilities: a model is exactly solvable or non-solvable. It turned out 
that there is also the third possibility-so-called quasi-exactly solvable models (QESM). 
In the whole space of states of QESM there exist finite-dimensional subspaces for which 
solving the SchrMinger equation is reduced to algebraic procedure, so exact solutions cao 
be found in the algebraic form at least for a part of the spectrum. Firstly, QEsM were found 
empirically [1,2]. Later, it was shown that in the one-dimensional case they are intimately 
connected with SU(2) algebra [3-51 of linear differential operators. The general procedure 
for obtaining QEsM with the help of SU(2) group is developed in [6] (see also reviews 
[7-91). 

QESM can be either onedimensional or many-dimensional. In the latter case the manifold 
on which the wave function is defined is, in general, curved Riemannian space IlO-lZ]. As 
a result, at least two factors affect the motion of a quantum particle within such a manifold 
the metric (effective 'gravitational' field) and a usual scalar potential. Meanwhile, it is of 
interest to take into consideration one more factor- magnetic field or its n-dimensional 
analogue (for brevity we will speak simply about a magnetic field). 

Following the general procedure of obtaining QESM described in the references cited 
above, consider goup Hamiltonian 

H = C,bL"Lb f CnL". (1) 

Here La are group generators obeying commutation relations for some Lie algebra. It 
is assumed that all coefficients in (1) are real and Cob = cba .  

In this letter a general approach is developed which enables one to construct QESM with 
a magnetic field. This goal is achieved by generalization of the approach of [ 131 (section 4). 
It was shown in [13] that C,, = 0 leads to both hermiticity of (1) with a certain measure 
in Riemannian space and an absence of a magnetic field. We will see that taking C. # 0 
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also preserves hermiticity and corresponds to an appearance of a certain magnetic field in 
the Schrijdinger operator. 

By construction, it is assumed that operators L“ in (1) can be realized in terms of 
h e a r  differential operators and that the corresponding algebra admits finitedimensional 
representations. From the very beginning, we restrict ourselves to operators having the 
form 

without inhomogeneous terms, coefficients hap are real. This form is valid for the SO(n) 
group whose generators act in R”-’ (for n = 3 it gives us the well known operators 
of angular orbital momentum). In what follows we will not specify the explicit form of 
coefficients haN. 

Substituting (2) into the Schr6dinger equation 

H $  = E @ ,  

The equation takes the form 

Here 

Equation (4) can be rewritten as follows: 

where gPy can be viewed as contravariant components of the metric in the curved space, 
g,, being its covariant components, V, is the covariant derivative in this space. 

Take into account that 

g = detg,,. 

Comparing (4) and (7) one can easily obtain 
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In a general case (7) does not have the Schrodinger form because of the presence of 
terms with A,. Now let. in the expression for them, 

the real part being pure gradient: 

a, = P.P. 

Then by substitution 

Equation (7) is reduced to the form 

- g”(V,  - ib,)(V, - ib,) Y + UY = EY. 

The quantities b, determine the field tensor FPv = b , ,  - b,,” which is responsible for 

This is not the end of the story, however. It follows from (9Hll) that the potential is, 
the presence of a magnetic field, in general F,. # 0. 

generally speaking, complex: 

u=u*+iu2 

For the equation under consideration to have $e meaning of the Schrodinger equation 

Until now we have not used the concrete form of coefficients gpy and T’. Now 
it is necessary that U2 = 0. 

substitute (5 )  and (6) into (10). Then the real part of this equation gives us 

(16) 

Now invoke an additional assumption [13]: let operators L“ be Hermitian in some 

42 
42 

C,bhap(2hbva, - h b ” L  - hf,Y) = 0. 

metric g E  in which the scalar product is determined in a standard way: 

For example, for the SO(n) group $2 is the metric of a n - 1 dimensional hypersphere. 
Then the hermiticity condition 

(h LVI) = ( L V Z ,  $1) (18) 
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dong with (2) and (17) entails 

@,” 
hf;,” = -ha”- &“ 

Substitute (19) into (16) and obtain: 

It is clear that irrespective of Cab there exists the solution [I31 

which obeys the condition (12) of integrability and 

We have from (13), (22): 

Thus, normalition of Y in the space with the metric g,, is determined by normalization 
of q4 in the space with the metric g$. so normalizability of q4 entails normalizability of Y. 

Until now our treatment has run almost along the same lines as in [I31 where it was 
assumed C. = 0. The key new moment which makes our problem non-trivial is that for 
C, # 0 the integrability condition (12) is not, generally speaking, sufficient for hermiticity 
of Hamiltonian of the Schrodinger equation (14) since it contains the term iUz. 

Now substitute (6), (11) and (21) into (15). Then we have 

Now, again making use of (19), we see that expressions (24) and (25) coincide 
completely, so according to (15) U, = a! 

Thus, the general form of generators (2) along with the hermiticity condition (17) and 
(18) entail integrability condition (12) and, simultaneously, ensure that the potential is real. 
In other words, if generators (2). Hermitian in a space with the metric g,? Hamiltonian of 
the Schrodinger equation, (14) is Hermitian in a space with the metric gPv. 

The result obtained shows that there is essential difference between QESM based on 
SU(n) groups and those based on SO(n) ones. In the first case even when a magnetic 
field is absent it is a rather difficult task to find coefficients Cob for which the integrability 
condition (12) is satisfied. In the second case we obtain at once QESM with well defined 



Letter to the Editor L451 

Hamiltonian for which this condition is satisfied automatidy and, moreover. the effective 
magnetic field is present.’ 

As an example we will discuss briefly QESM generated by the SO(4) group. Six 
generators of this group Jit = -i(xi(a/axk) - xk(a/axi) can be written down in 
hyperspherical coordinates x1 =~ {sinOsin$cosq, x2 = {sinBsinhsin~,, x3 = 
5 sine cos a, x 4  = 3 cos6 in the form Jit = 

a cotanecosp a - a 
ae aa ~~z=.s inasin~,-+cotanesin~,cosa-+ sine a9’  

For Hamiltonian (1) the metric (5). potential (15) and field tensor 3. are, in general, 
very cumbersome. Detailed analysis of the manifold generated by the group in question as 
well as the quantum dynamics of a particle in it could be a subject for separate investigation. 
Here we will consider only two simplest examples as illustrations. 

Let the Hamiltonian have the form 

H = 5:’ + 3;’ + J.3: + 34: + J,$ + Ji3 + CJn.  (27) 

Then the metric (5) of the manifold is 

ds2 = de’ + sin’ 0 @’ + sin’ 0 sin‘e dq’. (28) 

The potential and field tensor equal 

~=--sin’fsin’e c2 . 
2 

FeIp = -C sin’ sin 6 cos0 

F~~ = -C sin’ 0 sin a cos f 

3 s  = 0. 

In other words, we get the Schrodinger equation for a particle moving on a hypersphere 
under the inhence of the potential (29) and a magnetic field described by the tensor (30). 
In this case variables can be separated and the problem even proves to be exactly solvable, 
its solutions beiig generalized spherical harmonics. 

The more complicated example is Hamiltonian 

H = 54: + 3:’ + J& + cJ32. (31) 

Now the metric (5) takes the form 

R = t a n B .  
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The potential (15) and field tensor Ffiv equal 

1 2 C2R2 
U = -  l+-  + -(I - cos’ (p sin’ c) [ 1 + R 2  4 

F R ~  = -CRsingcosCcosp 

F ~ R  = CR sin (0 

Ft. = C RZ sinz 5 cos (p. 

(33) 

(34) 

The manifold is non-compact: its three-volume 1 d3x,& = W. 

It is worth noting that as a matter of fact the known cases when the Schrodinger equation 
with a magnetic field is exactly solvable are exhausted by a harmonic oscillator [14] and 
a free particle (see any textbook) in an homogeneous field. Being exactly solvable, the 
problem in question can be formally thought of as the particular case of Q E ~ M  according 
to the general.relation between exactly and quasi-exactly solvable models (see [7], section 
49. On the other hand, the approach developed in the present letter enables one to obtain 
QESM with a magnetic field which is not reduced to exactly solvable models. In so doing, 
one obtains many-parametric classes of solutions at once. Whereas exact solutions in a 
homogeneous magnetic field are found by separation of variables, the exact solutions under 
discussion exist in general without separation of variables. Of particular interest is the 
three-dimensional case when one can speak about a magnetic field literally. 

The inevitable price for the possibilities indicated is curvature of manifold. However, 
this can be of interest on its own and useful for applications, for example, in relativistic 
cosmology. In particular, the metric (28) describes geometry of the Einstein universe (see, 
for example, 1151, ch 10). 

An interesting problem worth considering is to generalize the approach of this paper to 
non-Abelian gauge fields. 
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